This list of references contains the scientific work the Biochar Calculator is made of. Here will you find the references we mentioned in articles on this website.
[ 1 ] USDA; National Drought Mitigation Center, University of Nebraska-Lincoln; U.S. drought monitor; https://droughtmonitor.unl.edu/, accessed Oct. 27: 2021.
[ 2 ] NIDIS, National Integrated Drought Information System; Current U.S. Drought Monitor Conditions for California; https://www.drought.gov/states/california, accessed Oct. 27: 2021.
[ 3 ] Weiss, S. (2020): Wasserknapheit in Deutschland: Wie groß ist die Gefahr für unser Trinkwasser?; WEB.DE, Nachrichtenartikel: https://web.de/magazine/wissen/naturumwelt/wasserknappheit-deutschland-gross-gefahr-trinkwasser-35035762.
[ 4 ] EPA: Wildfires, Climate Change Indicators: Wildfires; https://www.epa.gov/climateindicators/climate-change-indicators-wildfires.
[ 5 ] Rongbin Xu, Pei Yu, Michael J. Abramson,.Fay H. Johnston, Jonathan M. Samet, Michelle L. Bell, Andy Haines, Kristie L. Ebi, Shanshan Li, Yuming Guo: Wildfires, Global Climate Change, and Human Health; N Engl J Med 383; 22; nejm.org, October 29, 2021.
[ 6 ] IPCC (2020): Climate Change and Land – An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems – Summary for Policymakers; ISBN 978-92-9169-154-8; https://www.ipcc.ch/srccl/, accessed Oct. 28: 2021.
[ 7 ] IPCC, 2018: Global Warming of 1.5ÅãC.An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. P.rtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. P.an, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]; https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf.
[ 8 ] EPA; Climate Change Indicators in the United States 2016; 4th edition (2021 update) https://www.epa.gov/sites/default/files/2021-02/documents/climate_indicators_2016.pdf.
[ 9 ] Obermeyer, L. (2020): Climate change: Germany experiences worst drought in 250 years; ONLINE FOCUS, news article: https://www.focus.de/wissen/klima/klimawandel-schlimmsteduerre-seit-1776-warum-es-mache-regionen-besonders-hart-trifft_id_12320818.html.
[ 10 ] Lehmann, N.. (2019): Climate change brings more heavy rain in Germany, news article: https://www.agrarheute.com/management/betriebsfuehrung/klimawandel-bringt-mehrstarkregen-deutschland-561929
[ 11 ] IUCN (2015): Land degradation and climate change; IUCN brief for COP21; https://www.iucn.org/sites/dev/files/import/downloads/land_degradation_issues_brief_cop21_031215.pdf.
[ 12 ] WHO (2020) Climate change: Land degradation and desertification; https://www.who.int/newsroom/q-a-detail/climate-change-land-degradation-and-desertification
[ 13 ] Blog: AgriFarming: Soil Degradation Causes, Effects, Preventive Methods; https://www.agrifarming.in/soil-degradation-causes-effects-preventive-methods accessed Oct. 30, 2021.
[ 14 ] Deepak Ray (2021): Climate change is affecting crop yields and reducing global food supplies; Alliance for Science, Boyce Thompson Institute in affiliation with Cornell University; https://allianceforscience.cornell.edu/blog/2019/07/climate-change-affecting-crop-yieldsreducing-global-food-supplies/.
[ 15 ] Mitteldeutscher Rundfunk (2019): Statistical data – climate development and agricultural yields; news article: https://www.mdr.de/wissen/statistik-landwirtschaft-ernte-ertrag-wetter-100.html.
[ 16 ] WWF (2020) Living Planet Report 2020; https://www.wwf.de/living-planet-report/
[ 17 ] Buhtz, A. (2020): Animal populations worldwide shrunk by more than two thirds since 1970; ZEIT ONLINE, news article: https://www.zeit.de/wissen/umwelt/2020-09/wwf-studietierbestaende-rueckgang-umwelt-artenvielfalt-tiersterben.
[ 18 ] Kampffmeyer, T. (2018): Agriculture – Victim or perpetrator of climate change? Greenhouse gas emissions from agriculture; Baden-Württemberg, Statistisches Landesamt, Monatshefte 9/2018 https://www.statistik-bw.de/Service/Veroeff/Monatshefte/20180909.
[ 19 ] EPA – United States Environmental Protection Agency (2021): U.S. Greenhouse Gas Emissions and Sinks – 1990-2019, https://www.epa.gov/sites/default/files/2021-04/documents/us-ghg-inventory-2021-main-text.pdf?VersionId=yu89kg1O2qP754CdR8Qmyn4RRWc5iodZ, accessed Oct. 30, 2021.
[ 20 ] UNEP (2019): The huge potential of agriculture to slow climate change; United Nations Environment Programme (UNEP), news-page, https://www.unep.org/news-andstories/story/huge-potential-agriculture-slow-climate-change; accessed Oct. 30, 2021.
[ 21 ] Kebreab E., Feng X. (2021): Strategies to reduce methane emissions from enteric and lagoon sources; UC Davis report prepared for State of California Air Resources Board, Research Division; contract 17RD018.
[ 22 ] Schwarzer S. (2021): Putting Carbon back where it belongs – the potential of carbon sequestration in the soil; UN Environment Science Division / GRID-Geneva and University of Geneva, UN Environment Foresight Brief 013, https://wedocs.unep.org/bitstream/handle/20.500.11822/28453/Foresight013.pdf?sequence=1&isAllowed=y, accessed Oct. 30, 2021
[ 23 ] Fuss S., Lamb W.F., Callaghan M.W. (2018): Negative emissions—Part 2: Costs, potentials and side effects; Environ. Res. Lett. 13 (2018) 063002.
[ 24 ] CARB (California Air Resources Board): Short-Lived Climate Pollutant Reduction Strategy. https://ww2.arb.ca.gov/our-work/programs/slcp/about, accessed Oct. 31, 2021.
[ 25 ] Office of Governor Newsom (2020): Governor Newsom Launches Innovative Strategies to Use California Land to Fight Climate Change, Conserve Biodiversity and Boost Climate Resilience; announcement Oct. 7, 2020, https://www.gov.ca.gov/2020/10/07/governor-newsom-launchesinnovative-strategies-to-use-california-land-to-fight-climate-change-conserve-biodiversity-andboost-climate-resilience/, accessed Oct. 31, 2021.
[ 26 ] Carbon Cycle Institute: Carbon Farming; https://ww2.arb.ca.gov/sites/default/files/2020-08/phwg-2-7-18-cci-estrada-and-creque.pdf, accessed Oct. 31, 2021.
[ 27 ] Shattuck A.: Healthy Soils, Healthy Communities: Connecting agroecology and environmental health, https://ww2.arb.ca.gov/sites/default/files/2020-08/phwg-2-7-18-a-shattuck-healthysoils.pdf, accessed Oct. 31, 2021.
[ 28 ] Hammond A.A.J., Motev M., Brummit C.D., DuBuisson M.L. (2921): Implementing the Soil Enrichment Protocol at Scale: Opportunities for an Agricultural Carbon Market; Front. Clim., 21 June 2021, https://doi.org/10.3389/fclim.2021.686440, accessed Nov. 1, 2021.
[ 29 ] CAR – Climate Action Reserve (2020), Soil Enrichment Protocol – Reducing emissions and enhancing soil carbon sequestration on agricultural lands, Version 1.0 for Public Comment, August 2020, https://www.climateactionreserve.org/wpcontent/uploads/2020/10/Soil-Enrichment-Protocol-V1.0.pdf, accessed Nov. 1, 2021.
[ 30 ] Martin P.L., Goodhue R.E., Wright B.D.(eds.) (2020): California Agriculture – Dimensions and Issues; Giannini Foundation Information Series 20-01, chapter 1 “Introduction”,https://s.giannini.ucop.edu/uploads/pub/2021/01/26/calag_book_complete_online.pdf accessed Nov. 1, 2021.
[ 31 ] Martin P.L., Goodhue R.E., Wright B.D.(eds.) (2020): California Agriculture – Dimensions and Issues; Giannini Foundation Information Series 20-01, chapter 16 “Climate Change and California Agriculture”, https://s.giannini.ucop.edu/uploads/pub/2021/01/26/calag_book_complete_online.pdf accessed Nov. 1, 2021.
[ 32 ] California Department of Food and Agriculture, Agricultural Statistics Review 2019-2020, https://www.cdfa.ca.gov/Statistics/PDFs/2020_Ag_Stats_Review.pdf.
[ 33 ] Desai D. (2018): Soil conservation in California: An analysis of the healthy soils initiative; NYU Environmental Law Journal, Feb 2, 2018; https://www.nyuelj.org/2018/02/soil-conservation-incalifornia-an-analysis-of-the-healthy-soils-initiative/, accessed Oct. 30, 2021.
[ 34 ] Tomich, T.: The California Nitrogen Assessment: Challenges and Solutions for People, Agriculture, and the Environment; , UC Davis, Dept. Agriculture and Natural Resources, Report: https://asi.ucdavis.edu/sites/g/files/dgvnsk5751/files/inline-files/Appendices_CNA.pdf.
[ 35 ] CARB (2018): An Inventory of Ecosystem Carbon in California’s Natural & Working Lands – 2018 Edition; https://ww3.arb.ca.gov/cc/inventory/pubs/nwl_inventory.pdf, accessed Nov. 3, 2021.
[ 36 ] DeClerck F, Singer M. 2003. Looking back 60 years, California soils maintain overall chemical quality. Calif Agr 57(2):38-41. https://doi.org/10.3733/ca.v057n02p38. https://calag.ucanr.edu/Archive/?article=ca.v057n02p38#fig5702p39b.
[ 37 ] USDA NRCS, Soil Survey of Fresno County, California, Western Part https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/california/CA653/0/fresno.pdf.
[ 38 ] Scudiero E., Skaggs T., Anderson R., Cor D. (2016). Soil degradation in farmlands of California’s San Joaquin Valley resulting from drought-induced land-use changes; Geophysical Research Abstracts Vol. 18, EGU2016-728, 2016, EGU General Assembly 2016.
[ 39 ] Letey, J. (2000). Soil salinity poses challenges for sustainable agriculture and wildlife. California Agriculture, 54, 43–48; https://pdfs.semanticscholar.org/9446/e304dc88feac5a50279d73a6b83809e7cef9.pdf, accessed Nov. 1, 2021.
[ 40 ] USDA NASS, 2017 Census of Agriculture (2017); Report: https://www.nass.usda.gov/Publications/AgCensus/2017/index.php#full_report.
[ 41 ] Water Education Foundation, Irrigation; Website: https://www.watereducation.org/aquapediabackground/irrigation.
[ 42 ] California Farm Water Coalition, Map Shows 2021 Farm Water Supply Cuts; Website: https://www.farmwater.org/farm-water-news/map-2021-farm-water-supply-cuts/.
[ 43 ] Howitt, R, MacEwan, D, Medellin-Azuara, J, Lund, J, Sumner, D,. (2015), Economic Analysis of the 2015 Drought for California Agriculture; Report: https://watershed.ucdavis.edu/files/biblio/Final_Drought%20Report_08182015_Full_Report_WithAppendices.pdf.
[ 44 ] Pathak, T. et al., 2018, Climate Change Trends and Impacts on California Agriculture: A Detailed Review, https://www.mdpi.com/2073-4395/8/3/25/htm.
[ 45 ] EPA – United States Environmental Protection Agency; Laws and Regulations that Apply to Your Agricultural Operation by Farm Activity; website of the U.S. government, https://www.epa.gov/agriculture/laws-and-regulations-apply-your-agricultural-operation-farmactivity, accessed Oct. 30, 2021.
[ 46 ] EPA – United States Environmental Protection Agency; Agriculture Nutrient Management and Fertilizer; website of the U.S. government, https://www.epa.gov/agriculture/agriculture-nutrientmanagement-and-fertilizer, accessed Oct. 30, 2021.
[ 47 ] EPA – United States Environmental Protection Agency; regulatory content “nitrate”; website of the U.S. government, https://search.epa.gov/epasearch/?querytext=nitrate&areaname=&areacontacts=&areasearchurl=&typeofsearch=epa&result_template=#/, accessed Oct. 30, 2021.
[ 48 ] California Department of Food and Agriculture: Californian Fertilizer Laws and Regs 4.16.2020; https://www.cdfa.ca.gov/is/docs/Fertilizer_Law_and_Regs.pdf, accessed Oct. 30, 2021.
[ 49 ] California Department of Food and Agriculture: Californian Crop Fertilization Guidelines; Fertilizer Research and Education Program (FREP), online-guidelines in cooperation with UC Davis, https://www.cdfa.ca.gov/is/ffldrs/frep/FertilizationGuidelines/, accessed Oct. 30, 2021.
[ 50 ] German Federal Ministry of Jurisdiction and Consumer Protection: Düngeverordnung DüV (fertilization directive); https://www.gesetze-iminternet.de/d_v_2017/inhalts_bersicht.html.
[ 51 ] Süddeutsche Zeitung (2018): ECJ condemns Germany for too much nitrate in groundwater, news article 21.06.2018: https://www.sueddeutsche.de/wirtschaft/europaeischer-gerichtshofverurteilt-deutschland-nitrat-grundwasser-1.4025538.
[ 52 ] Schulz, F. (2019): Nitrate levels: Germany faces 850,000 euros in fines per day, Euractiv news article 26/07/2019: https://www.euractiv.de/section/landwirtschaft-undernahrung/news/nitratwerte-deutschland-drohen-850-000-euro-strafzahlungen-pro-tag/.
[ 53 ] De Gryze S., et al. (2010): Evaluation of the Opportunities for Generating Carbon Offsets from Soil Sequestration of Biochar; commissioned by CAR – Climate Action Reserve, prepared by Terra Global Capital with support of UC Davis and Cornell University.
[ 54 ] International Biochar Initiative, Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil; https://www.biocharinternational.org/wpcontent/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf.
[ 55 ] EBC (2021) ‘European Biochar Certificate – Guidelines for a Sustainable Production of Biochar.’ European Biochar Foundation (EBC), Arbaz, Switzerland. (https://europeanbiochar.org). Version 9.5E of 1st August 2021.
[ 56 ] EBC (2021) ‘European Biochar Certificate – Guidelines for a Sustainable Production of Biochar.’ European Biochar Foundation (EBC), Arbaz, Switzerland. (https://europeanbiochar.org). Version 9.5E of 1st August 2021.
[ 57 ] Schahczenski J., Hill H. (2009): Agriculture, Climate Change and Carbon Sequestration; ATTRA IP338, Slot 336, Version 012309; www.attra.ncat.org/attrapub/PDF/carbonsequestration.pdf.
[ 58 ] California Environmental Protection Agency – Air Resources Board (2014): Compliance Offset Protocol Livestock Projects; November 14, 2014: https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2014/capandtrade14/ctlivestockprotocol.pdf, accessed Nov. 2, 2021.
[ 59 ] California Air Resources Board, ARB Offset Credit Issuance; Website: https://ww2.arb.ca.gov/our-work/programs/compliance-offset-program/arb-offsetcreditissuance.
[ 60 ] California Air Resources Boards, ARB Offset Credits Issues; Table: https://ww2.arb.ca.gov/sites/default/files/cap-andtrade/offsets/issuance/arb_offset_credit_issuance_table.pdf.
[ 61 ] Shelford, T., Cornell University, Estimating Farm Size Required to Economically Justify Anaerobic Digestion on Small Dairy Farms; Report: https://northeast.manuremanagement.cornell.edu/Pages/General_Docs/Events/19.Shelford.pdf.
[ 62 ] Larry Fink (2020), A Fundamental Reshaping of Finance; 2020 letter to CEOs, https://www.blackrock.com/corporate/investor-relations/2020-larry-fink-ceo-letter, accessed Nov. 2, 2021.
[ 63 ] Carbonfuture: marketplace; https://platform.Carbonfuture.earth/balancer/portfolios.
[ 64 ] Puro.Earth, Oregon Biochar Solutions – Carbon Removal Information and CO2 Price, Website: https://puro.earth/services/mitigating-climate-change-1-ton-at-the-time-100033, accessed Nov. 3, 2021.
[ 65 ] Puro.Earth, Freres Biochar – Carbon Removal Information and CO2 Price, Website: https://puro.earth/services/freres-biochar-100042, accessed Nov. 3, 2021.
[ 66 ] Puro.Earth, ARTi Biochar – Carbon Removal Information and CO2 Price, Website: https://puro.earth/services/removing-carbon-in-the-us-corn-belt-100053, accessed Nov. 3, 2021.
[ 67 ] California Department of Food and Agriculture, 2020 Healthy Soils Program Incentives Program; Report: https://www.cdfa.ca.gov/oefi/healthysoils/docs/2020_HSP_Incentives_RGA.pdf.
[ 68 ] California Department of Food and Agriculture, 2021 Healthy Soils Program Demonstration Projects; Draft Report: https://www.cdfa.ca.gov/oefi/healthysoils/docs/2021/2021_hsp_demo_projects_draft_rga.pdf.
[ 69 ] California Department of Food and Agriculture, Alternative Manure Management Program, Website: https://www.cdfa.ca.gov/oefi/AMMP/#:~:text=What%20is%20the%20alternative%20manure,in%20reduced%20greenhouse%20gas%20emissions.
[ 70 ] California Department of Food and Agriculture, Alternative Manure Management Program – Project Level Data (2021); Table: https://www.cdfa.ca.gov/oefi/AMMP/docs/AMMP_Project_Level_Data.pdf.
[ 71 ] California Department of Food and Agriculture, Alternative Manure Management Program – Projects Selected for Awards and Funds (2020); Table: https://www.cdfa.ca.gov/oefi/ammp/docs/2020-AMMP_ProjectsAwarded.pdf.
[ 72 ] Schmidt, Hans-Peter; Hagemann, Nikolas; Draper, Kathleen; Kammann, Claudia, (2019), The use of biochar in animal feeding, July 31, 2019, PeerJ Article: https://peerj.com/articles/7373/#table-1, https://www.ncbi.nlm.nih.gov/pubmed/31396445.
[ 73 ] Schmidt HP, Hagemann N, Abächerli F, Leifeld J, Bucheli T (2021): Pflanzenkohle in der Landwirtschaft (Biochar in agriculture); Agroscope Science | Nr. 112 / 2021, https://ira.agroscope.ch/de-CH/publication/46567, accessed Nov. 3, 2021.
[ 74 ] Glaser B (2018): Pflanzenkohle -Stand der Forschung; oral presentation, FVPK symposium “Pflanzenkohle im kommunalen Kontext”; Halle, 9.11.2018.
[ 75 ] Möller, A. , Höper, H. (2015) Evaluation of the use of biochar in agriculture from the perspective of soil protection; NS State Office for Mining, Energy and Geology 2014; https://www.lbeg.niedersachsen.de/download/93635.
[ 76 ] Helfrich, M. (2016) Use of coals from pyrolysis and hydrothermal carbonization in agriculture; Thünen Institute, Project online publication; https://www.thuenen.de/de/ak/projekte/pflanzenkohle-in-der-landwirtschaft/.
[ 77 ] Möller, A. (2014) Biochar: Diverse properties make generalized statements on the effect on soil functions hardly possible; BGR Federal Institute for Geosciences and Natural Resources, online publication, download 21.01.2021, https://www.bgr.bund.de/DE/Themen/Boden/Stoffeigenschaften/Biokohle/biokohle_node.html.
[ 78 ] Gurwick NP, Moore LA, Kelly C, Elias P (2013) A Systematic Review of Biochar Research, with a Focus on Its Stability in situ and Its Promise as a Climate Mitigation Strategy. PLoS ONE 8(9): e75932. doi:10.1371/journal.pone.0075932.
[ 79 ] Kalus K., Koziel J.A., Opalinski S. (2019): A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production; Appl. Sci. 2019, 9, 3494; doi: https://doi.org/10.3390/app9173494.
[ 80 ] Helmholtz Centre for Environmental Research: Hydrothermal Carbonization HTC; https://www.ufz.de/index.php?en=37433, accessed Nov. 05, 2021.
[ 81 ] US-EPA (2008): Polycyclic Aromatic Hydrocarbons (PAHs); https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/pahs.pdf, accessed Nov. 05, 2021.
[ 82 ] Garcia‐Perez, M (2008) The formation of polyaromatic hydrocarbons and dioxins during pyrolysis: a review of the literature with descriptions of biomass composition, fast pyrolysis technologies and thermochemical reactions, Washington State University, pp1‐57, https://research.wsulibs.wsu.edu:8443/xmlui/bitstream/handle/2376/5966/TheFormationOfPolyaromaticHydrocarbonsAndDioxinsDuringPyrolysis.pdf?sequence=1&isAllowed=y, accessed Nov. 05, 2021.
[ 83 ] Masek, O., Konno, M., Hosokai, S., Sonoyama, N., Norinaga, K., and Hayashi, J. (2008) A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification. Biomass and Bioenergy, vol32, pp78‐89., https://www.cabdirect.org/cabdirect/abstract/20083083075, accessed Nov. 05, 2021.
[ 84 ] Sohi, S., Lopez‐Capel, E., Krull, E. and Bol, R. (2009) Biochar, climate change and soil: a review guide future research, CSIRO, pp64, https://www.clw.csiro.au/publications/science/2009/sr05-09.pdf, accessed Nov. 05, 2021.
[ 85 ] European Commission, Annexes to the Commission Delegated Regulation amending Annexes II, III and IV to Regulation (EU) 2019/1009 of the European Parliament and of the Council for the purpose of adding pyrolysis or gasification materials as a component material category in EU fertilizing products; https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=PI_COM%3AAres%282021%2944211.
[ 86 ] Schmidt, H.-P., 2012. 55 uses of biochar. Ithaka J. 286- 289.
[ 87 ] Arnold, U.; Leetsch, D. (2020a): BioKorRekT – Production and utilization of biochar in postmining landscapes, Part 1: Market investigation; Project report, Berlin, April 2020.
[ 88 ] Arnold, U.; Leetsch, D. (2020b): BioKorRekT – Production and utilization of biochar in postmining landscapes, Part 2: Economic viability and financing; Project report, Berlin, May 2020.
[ 89 ] Schmidt HP, Kammann C, Gerlach A, Gerlach H (2016): Der Einsatz von Pflanzenkohle in der Tierfütterung, Ithaka-Journal 2016, Arbaz, Switzerland, ISSN 1663-0521, pp. 364-394, www.ithaka-journal.net/95.
[ 90 ] Gerlach A, Schmidt HP (2014): The use of biochar in cattle farming, the Biochar Journal 2014, Arbaz, Switzerland. ISSN 2297-1114, www.biochar-journal.org/en/ct/9, Version of 01st August 2014, Accessed: 05.11.2021.
[ 91 ] Gerlach H, Schmidt HP (2014): Biochar in poultry farming, the Biochar Journal 2014, Arbaz, Switzerland. ISSN 2297-1114, www.biochar-journal.org/en/ct/10, Version of 01st, August 2014, Accessed: 05.11.2021.
[ 92 ] Chu, G.M., Jung, C.K., Kim, H.Y., Ha, J.H., Kim, J.H., Jung, M.S., Lee, S.J., Song, Y., Ibrahim, R.I.H., Cho, J.H., Lee, S.S., Song, Y.M., 2013a. Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Anim. Sci. J. 84, 113-20.
[ 93 ] Chu, G.M., Kim, J.H., Kang, S.N., Song, Y.M., 2013b. Effects of Dietary Bamboo Charcoal on the Carcass Characteristics and Meat Quality of Fattening Pigs. Korean J. Food Sci. Anim. Resource. 33, 348–355.
[ 94 ] Majewska, T.; Pyrek, D.; Faruga, A.: A note on the effect of charcoal supplementation on the performance of big 6 heavy tom turkeys. J. Anim. Feed Sci. 11 135-141 (2002).
[ 95 ] Majewska, T.; Pudyszak, K.: The effect of charcoal addition to diets for broilers on performance and carcass parameters. Produktyvumui ir skerdenos rodikliams 55 10-12 (2011).
[ 96 ] Majewska, T.; Mikulski, D.; Siwik, T.: Silica grit, charcoal and hardwood ash in turkey nutrition. Journal of Elementology 14 489-500 (2009).
[ 97 ] Chu, G.M., Kim, J.H., Kim, H.Y., Ha, J.H., Jung, M.S., Song, Y., Cho, J.H., Lee, S.J., Ibrahim, R.I.H., Lee, S.S., Song, Y.M., 2013c. Effects of bamboo charcoal on the growth performance, blood characteristics and noxious gas emission in fattening pigs. J. Appl. Anim. Res. 41, 48-55.
[ 98 ] Choi, J.-S., Jung, D.-S., Lee, J.-H., Choi, Y.-I., Lee, J.-J., 2012. growth performance, immune response and carcass characteristics of finishing pigs by feeding stevia and charcoal. Korean J. Food Sci. Anim. Resource 32, 228–233.
[ 99 ] Lee, J.-J., Park, S.-H., Jung, D.-S., Choi, Y.-I., Choi, J.-S., 2011. meat quality and storage characteristics of finishing pigs by feeding stevia and charcoal. Korean J. Food Sci. Anim. Resource 31, 296–303.
[ 100 ] Leng, R.A., Preston, T.R., Inthapanya, S., 2013b. Biochar reduces enteric methane and improves growth and feed conversion in local ” Yellow ” cattle fed cassava root chips and fresh cassava foliage 24, 2-7.
[ 101 ] McHenry, M.P., 2010. Carbon-based stock feed additives: a research methodology that explores ecologically delivered C bio-sequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations. J. Sci. Food Agric. 90, 183-7.
[ 102 ] Joseph, S., Pow, D., Dawson, K., Mitchell, D.R.G., Rawal, A., Hook, J., Taherymoosavi, S., Zwieten, L.V.A.N., Rust, J., Donne, S., Munroe, P., Pace, B., Graber, E., Thomas, T., Nielsen, S., Ye, J., Lin, Y., 2015b. Feeding Biochar to Cows : An Innovative Solution for Improving Soil Fertility and Farm Productivity 25, 666-679.
[ 103 ] Leng, R.A., Inthapanya, S., Preston, T.R., 2012. biochar lowers net methane production from rumen fluid in vitro. Livest. Res. Rural Dev. 24 (6).
[ 104 ] Phanthavong, V., Viengsakoun, N., Sangkhom, I., Preston, T.R., 2015. Effect of biochar and leaves from sweet or bitter cassava on gas and methane production in an in vitro rumen incubation using cassava root pulp as source of energy. Livest. Res. Rural Dev. 27.
[ 105 ] Thu, M., Koshio, S., Ishikawa, M., Yokoyama, S., 2010. Effects of supplementation of dietary bamboo charcoal on growth performance and body composition of juvenile Japanese Flounder, Paralichthys olivaceus. J. World Aquac. Soc. 41, 255-262.
[ 106 ] Leng, RA; Inthapanya, Sangkhom; Preston, TR, (2013), Livestock Research for Rural Development 25 (6) 2013: All biochars are not equal in lowering methane production in in vitro rumen incubations, Journal Article: https://www.lrrd.cipav.org.co/lrrd25/6/leng25106.htm.
[ 107 ] Phongphanith, Sengsouly & Preston, TR (2016), Livestock Research for Rural Development 28 (10) 2016: Effect of rice-wine distillers’ byproduct and biochar on growth performance and methane emissions in local “Yellow” cattle fed ensiled cassava root, urea, cassava foliage and rice straw, Journal Article: https://lrrd.cipav.org.co/lrrd28/10/seng28178.html.
[ 108 ] Choi, Jung-Soek, et al. (2012), Korean Society for Food Science of Animal Resources; Volume 32 Issue 2, Pages 228-233: Growth Performance, Immune Response and Carcass Characteristics of Finishing Pigs by Feeding Stevia and Charcoal, Journal Article: https://koreascience.or.kr/article/JAKO201215239618002.page.
[ 109 ] Kupper, T; Fischlin, I; Spring, P. (2015), Use of a feed additive based on biochar for mitigation of ammonia emissions from weaned piglets and broilers; RAMIRAN 2015 Conference Proceedings, Pages 424-427, ISBN: 978-3-946094-02-9, DOI: urn:nbn:de:gbv:830-88213742.
[ 110 ] Man, Ka Yan; Chow, Ka Lai; Man, Yu Bon; Mo, Wing Yin; Wong, Ming Hung, (2020), Critical Reviews in Environmental Science and Technology: Use of biochar as feed supplements for animal farming, Journal Article: https://www.tandfonline.com/doi/full/10.1080/10643389.2020.1721980.
[ 111 ] Winder, T; Jolly-Breithaupt, M.L.; Freeman, C.B.; Mark, B.M.; Erickson, G.E.; Watson, E.T., (2018), 10th International Livestock Environment Symposium: Evaluating the Effect of Feeding Biochar to Cattle on Methane Production and Diet Digestibility, Study: https://elibrary.asabe.org/abstract.asp?aid=49732.
[ 112 ] Praisai, T.P.; Walsch, K.B.; Midmore, D.J.; Bhattarai, S.P., (2018), Animal Production Sciences 58 (9) 1632-1641: Effect of biochar, zeolite and bentonite feed supplements on egg yield and excreta attributes, Study: https://www.publish.csiro.au/an/an16290.
[ 113 ] Willson, N.L.; Van, Thi T.H.; Bhattaria, S.P.; Courtice, J.M.; McIntyre, J.R.; Prasai, T.P.; Moore, R.J..; Walsh, K; Stanley, D; (2019), Feed supplementation with biochar may reduce poultry pathogens, including Campylobacter hepaticus, the causative agent of Spotty Liver Disease, Research Article: https://journals.plos.org/plosone/article/file?type=printable&id=10.1371/journal.pone.0214471.
[ 114 ] Landwirtschaftskammer Niedersachsen (Lower Saxony Chamber of Agriculture) (2018), Pflanzenkohle im Schweinemastversuch (Vegetable charcoal in pig fattening trials); online article: https://www.lwk-niedersachsen.de/index.cfm/portal/1/nav/753/article/31785.html.
[ 115 ] Husk B., Major J. (2011): Biochar Commercial Agriculture Field Trial in Qu.bec, Canada – Year Three: Effects of Biochar on Forage Plant Biomass Quantity, Quality and Milk Production; addendum to Blue Leaf-report https://www.blue-leaf.ca/main-en/report_a3.php.
[ 116 ] McCallum Q. (2020): Biochar boosts Fleurieu dairy production; Stock Journal | South Australia; https://www.stockjournal.com.au/story/6781583/biochar-boosts-fleurieu-dairyproduction/, accessed Oct. 10, 2021.
[ 117 ] Schmidt H.P., Ithaca Institute (2013), Cascading uses of plant charcoal in livestock (part 1: bedding); Journal of Terroir Wine and Biodiversity, 2013, ISSN 1663-0521: https://www.ithakajournal.net/kaskadennutzung-von-pflanzenkohle-in-der-tierhaltung-teil-1-einstreu.
[ 118 ] CarboVerte, CARBOTIV bedding additive, website: https://carboverte.de/carbopetsdamitfuehlen-sich-tiere-wohl/169-35-kg-gefluegel-einstreuzusatz.html.
[ 119 ] Ithaka Institute (2019), Güllebehandlung (Slurry Treatment), website: https://www.ithakainstitut.org/de/ct/22.
[ 120 ] Kizito, S.; Wu, S.; Kirui, W. K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. (2015) Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurr; Science of The Total Environment, Volume 505, 1 February 2015, Pages 102-112.
[ 121 ] O’Toole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C.I., Kern, J., Kuoppam.ki, K., Mumme, J., Schmidt, Hans-Peter Schulze, M., Srocke, Franziska Stenr.d, M., Stenstr.m, J., 2016. Current and future applications for biochar, in Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B. (Eds.), Biochar in European Soils and Agriculture: Science and Practice. London.
[ 122 ] Schmidt, H.-P., Shackley, S., 2016. biochar horizon 2025, in Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B. (Eds.), Biochar in European Soils and Agriculture: Science and Practice. London
[ 123 ] Shackley, S., 2014. shifting chars? Aligning climate change, carbon abatement, agriculture, land use and food safety and security policies. Carbon Manag. 5, 119–121.
[ 124 ] CharGrow (2019): The Biochar Impact: How Biochar Affects Nutrient and Water Retention; blog article: https://char-grow.com/biochar-impact-nutrient-water On the economics of biochar use on farms – report.
[ 125 ] Dai, Y., Zheng, H., Jiang, Z., Xing, B., 2020. combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 713, 136635. https://doi.org/10.1016/J.SCITOTENV.2020.136635.
[ 126 ] Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., Sabir, M., 2020. biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 36, 2-18. https://doi.org/10.1111/sum.12546.
[ 127 ] Zhang, Q., Xiao, J., Xue, J., Zhang, L., 2020. quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability 12, 3436. https://doi.org/10.3390/su12083436.
[ 128 ] Wang, Y., Villamil, M.B., Davidson, P.C., Akdeniz, N., 2019. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Sci. Total Environ. 685, 741-752. https://doi.org/10.1016/J.SCITOTENV.2019.06.244.
[ 129 ] SoilQuality.org; Fact Sheets – Water Availability; https://www.soilquality.org.au/factsheets/water-availability, accessed Nov. 24, 2021.
[ 130 ] Razzaghi, F., Obour, P.B., Arthur, E., 2020. does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361, 114055. https://doi.org/10.1016/J.GEODERMA.2019.114055.
[ 131 ] Omondi, M.O., Xia, X., Nahayo, A., Liu, X., Korai, P.K., Pan, G. (2016) Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274, 28–34. https://doi.org/10.1016/J.GE-ODERMA.2016.03.029, accessed Nov. 23, 2021.
[ 132 ] CharGrow (2019) The Biochar Impact: How Biochar Affects Nutrient and Water Retention; blog, https://char-grow.com/biochar-impact-nutrient-water-retention, accessed Nov. 23, 2021.
[ 133 ] Vijai V., Shreedhar S., Adlak K., Payyanad S., Sreedharan V., Gopi G., van der Voort T.S., Malarvizhi P., Yi S. (2021) Review of Large-Scale Biochar Field-Trials for Soil Amendment and the Observed Influences on Crop Yield; Frontiers in Energy Research, August 2021. Volume 9 | Article 710766; doi: https://doi.org/10.3389/fenrg.2021.710766, accessed Nov. 23, 2021.
[ 134 ] Karhu K., Mattila T., Bergstr.m I., Regina K. (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study; Agriculture, Ecosystems & Environment, Volume 140, Issues 1–2, 30 January 2011, Pages 309-313, https://doi.org/10.1016/j.agee.2010.12.005, accessed Nov. 23, 2021.
[ 135 ] Are K.S., Adelana A.O., Fademi I.O., Aina O.A. (2017) Improving physical properties of degraded soil: Potential of poultry manure and biochar; Agriculture and Natural Resources Volume 51, Issue 6, December 2017, Pages 454-462, https://doi.org/10.1016/j.anres.2018.03.009, accessed Nov. 23, 2021.
[ 136 ] Hussain R., Bordoloi S., Gupta P., Garg A., Ravi K., Sreedeep S., Sahoo L. (2020) Effect of biochar type on infiltration, water retention and desiccation crack potential of a silty sand; Biochar, volume 2, pages465–478 (2020), https://link.springer.com/article/10.1007/s42773-020-00064-0, accessed Nov. 23, 2021.
[ 137 ] Wang D., Li C., Parikh S.j., Scow K.M. (2019) Impact of biochar on water retention of two agricultural soils – A multi-scale analysis; Geoderma, Volume 340, 15 April 2019, Pages 185-1, https://doi.org/10.1016/j.geoderma.2019.01.012, accessed Nov. 23, 2021.
[ 138 ] Yi S., Chang N.Y., Imhoff P.T. (2020) Predicting water retention of biochar-amended soil from independent measurements of biochar and soil properties; Advances in Water Resources, Volume 142, August 2020, 103638, https://doi.org/10.1016/j.advwatres.2020.103638, accessed Nov. 23, 2021.
[ 139 ] Blanco-Canqui H., Laird D.A., Heaton E.A., Rathke S., Acharya B.S. (2019): Soil carbon increased by twice the amount of biochar carbon applied after 6:years: Field evidence of negative priming; GCB Bioenergy 2020;12:240–251; DOI: https://doi.org/10.1111/gcbb.12665.
[ 140 ] Nagasea A., Dunnett N. (2011): The relationship between percentage of organic matter in substrate and plant growth in extensive green roofs; Landscape and Urban Planning 103 (2011) 230– 236; doi: https://doi.org/10.1016/j.landurbplan.2011.07.012.
[ 141 ] Rösemann C, Haenel H-D, Dämmgen U, D.ring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Schreiner C, Osterburg B, Fu. R (2019) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2017 : Report on methods and data (RMD) Submission 2019. Braunschweig: Johann Heinrich von Thünen-Institut, 432 p, Thünen Rep 67, DOI: https://doi.org/10.3220/REP1552549234000.
[ 142 ] Haenel H-D, Rösemann C, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Schreiner C, Osterburg B, Fu. R (2020) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2018: report on methods and data (RMD) Submission 2020. Braunschweig: Johann Heinrich von Thünen-Institut, 448 p, Thünen Rep 77, DOI: https://doi.org/10.3220/REP1584363708000
[ 143 ] Thünen Institute (2021) Greenhouse gas emissions from agriculture; online publication; https://www.thuenen.de/de/thema/klima-und-luft/emissionsinventare-buchhaltung-fuerdenklimaschutz/treibhausgas-emissionen-aus-der-landwirtschaft/.
[ 144 ] Statista (2021) Total number of all cattle and calves in the United States from 2001 to 2021; https://www.statista.com/statistics/194297/total-number-of-cattle-and-calves-in-the-us–since-2001/#:~:text=How%20many%20cows%20are%20in%20the%20U.S.%3F%20The,in%202019.%20Cattle%20farming%20in%20the%20United%20States, accessed Nov. 5, 2021.
[ 145 ] USDA-NASS (2021): 2020 STATE AGRICULTURE OVERVIEW – California; https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=CALIFORNIA, accessed Nov. 5, 2021.
[ 146 ] Saleem A., Ribeiro G.O., Yang W.Z., Beauchemin K.A., McGeough E.J., Ominski K.H., Okine E.K., McAllister T.A. (2018): Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet; Journal of Animal Science, June 2018; https://doi.org/10.1093/jas/sky204, accessed Nov. 5, 2021.
[ 147 ] Schmidt HP, Kammann C (2018): Klimapositive Landwirtschaft (Climate positive agriculture – climate balance of a Swiss pioneer farm); Ithaka Journal 2018, Arbaz, Switzerland, ISSN 1663-0521, pp. 422-435, www.ithaka-journal.net/120.
[ 148 ] EPA – United States Environmental Protection Agency (2004); National Emission Inventory – Ammonia Emissions from Animal Husbandry; https://www.epa.gov/sites/production/files/2020-10/documents/nh3inventoryfactsheet_jan2004.pdf, accessed Nov. 6, 2021.
[ 149 ] Döhler H., Eurich-Menden B., Dämmgen U., Osterburg B., Lüttich M., Bergschmidt A., Berg W., Brunsch R. (2002) BMVEL/UBA ammonia emission inventory of German agriculture and reduction scenarios until the year 2010. research report 299 42 256/02. texts 05/02. Federal Environment Agency, Berlin.
[ 150 ] Dämmgen U., Haenel H-D, Rösemann C., Brade W., Müller-Lindenlauf M., Eurich-Menden B., Döhler H., Hutchings NJ (2010a) An improved data base for the description of dairy cows in the German emission model GAS-EM. vTI Agricultural and Forestry Research 60, 87 – 100.
[ 151 ] Hestrin, R., Torres-Rojas, D., Dynes, J.J. et al. Fire-derived organic matter retains ammonia through covalent bond formation. Nat Commun 10, 664 (2019). https://doi.org/10.1038/s41467-019-08401-z.
[ 152 ] All About Feed (2021) 3NOP supplement reduces methane by 30%; https://www.allaboutfeed.net/animal-feed/feed-additives/3nop-supplement-reduces-methaneby-30/.
[ 153 ] Mootral (2021) Company’s website | About; https://mootral.com/about/.
[ 154 ] Zwick S. (2017) Can This Swiss Feed Supplement Do for Cows What Tesla Is Doing For Cars?; Ecosystem marketplace, https://www.ecosystemmarketplace.com/articles/can-mootraldo-for-cows-what-tesla-is-doing-for-cars/, accessed Nov. 6, 2021.
[ 155 ] DSM Animal Nutrition & Health (2020) Novel feed ingredient enables significant reduction of methane emissions in beef cattle; DSM press release, Calgary, CA & Kaiseraugst, CH, 16 Dec 2020 08:00 MST/16:00 CET; https://www.dsm.com/anh/en_US/news-events/pressreleases/2020/2020-12-16, accessed Nov. 6, 2021.
[ 156 ] DSM (2021) More sustainable farming with Bovaer. cattle feed additive; https://www.dsm.com/corporate/markets/animal-feed/minimizing-methane-from-cattle.html, accessed Nov. 6, 2021.
[ 157 ] Farm Online Australia (2021) Feed additive delivers 90pc methane emission in feedlots; https://www.farmonline.com.au/story/7250642/feed-additive-delivers-90pc-methane-emissionin-feedlots/, accessed Nov. 6, 2021.
[ 158 ] Van Wesemael D., Vandaele L., Ampe B., Cattrysse H., Duval S., Kindermann M., Fievez V., De Campeneere S., Peiren N. (2019) Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol; J. Dairy Sci. 102:1780–1787, https://doi.org/10.3168/jds.2018-14534.
[ 159 ] Eory, V., Maire, J., Anthony, S., Topp, C.F.E., Rees, R.M., Hamilton, H., Wall, E. (2019) Non-CO2 abatement in the UK agricultural sector by 2050; https://www.theccc.org.uk/publication/non-co2-abatement-in-the-uk-agricultural-sector-by-2050-scottish-rural-college/, accessed Nov. 6, 2021.
[ 160 ] Roque B.M., van Lingen H.J, Vrancken H, Kebreab E. (2019) Effect of Mootral—a garlic- and citrus-extract-based feed additive—on enteric methane emissions in feedlot cattle; Transl. Anim. Sci. 2019.3:1383–1388, doi: https://doi.org/10.1093/tas/txz133, accessed Nov. 6, 2021.
[ 161 ] Arnold, U., Yildiz, O. Economic risk analysis of decentralized renewable energy infrastructures – a Monte Carlo simulation approach. Renewable Energy 2015, 77, 227-239.
[ 162 ] Arnold, U., Brück, T., de Palmenaer, A., Kuse, K. (2018). Carbon Capture and Sustainable Utilization by Algal Polyacrylonitrile Fiber Production: Process Design, Techno-economic Analysis, and Climate Related Aspects. Ind. Eng. Chem. Res., 57, 7922-7933, doi: https://doi.org/10.1021/acs.iecr.7b04828.
[ 163 ] Arnold, U., de Palmenaer, A., Brück, T., Kuse, K. (2018). Energy-Efficient Carbon Fiber Production with Concentrated Solar Power: Process Design and Techno-economic Analysis. Ind. Eng. Chem. Res., 57, 7934−7945, doi: https://doi.org/10.1021/acs.iecr.7b04841.
[ 164 ] Bundesinformationszentrum Landwirtschaft (2019), “Wann ist ein Schwein schlachtreif?”, Webseite: https://www.landwirtschaft.de/landwirtschaft-verstehen/haetten-siesgewusst/tierhaltung/wann-ist-ein-schwein-schlachtreif.
[ 165 ] Bundesministerium für Ern.hrung und Landwirtschaft (2019), Nutztierhaltung: Schweine, Webseite: https://www.bmel.de/DE/Tier/Nutztierhaltung/Schweine/schweine_node.html.
[ 166 ] Bayerische Landesanstalt für Landwirtschaft (2020), Futterberechnung für Schweine, Seite 10, Bericht: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/futterberechnung__fuer_schweine_lfl-information.pdf.
[ 167 ] AgriFarming (2021): Pig Feed Chart and Pig Weight Chart for Beginners; https://www.agrifarming.in/pig-feed-chart-and-pig-weight-chart-for-beginners, accessed Nov. 15, 2021.
[ 168 ] Family Farm Livestock (2021): Pounds Of Feed Needed To Raise A Pig For Meat; https://familyfarmlivestock.com/how-many-pounds-of-feed-do-you-need-to-finish-a-pig/, accessed Nov. 15, 2021.
[ 169 ] Kavanagh S. (2021) Feeding the Dairy Cow; https://www.teagasc.ie/media/website/animals/dairy/feedingdiarycow.pdf, accessed Nov. 15, 2021.
[ 170 ] Erickson P.S., Kalscheur K.F. (2020) Nutrition and feeding of dairy cattle (2020); Animal Agriculture, (2020) https://doi.org/10.1016/B978-0-12-817052-6.00009-4, accessed Nov. 15, 2021.
[ 171 ] New M, Ward E., Zook M. (2020) An Introduction to Finishing Beef; Division of Agricultural Sciences and Natural Resources • Oklahoma State University; https://extension.okstate.edu/fact-sheets/print-publications/afs/an-introduction-to-finishingbeef-afs-3302.pdf, accessed Nov. 15, 2021.
[ 172 ] New M, Ward E., Zook M. (2020) An Introduction to Finishing Beef; Division of Agricultural Sciences and Natural Resources • Oklahoma State University; https://extension.okstate.edu/fact-sheets/print-publications/afs/an-introduction-to-finishingbeef-afs-3302.pdf, accessed Nov. 15, 2021.
[ 173 ] PoultryOne.com (2021), PoultryOne guide to raising backyard chickens; https://poultryone.com/feeding-chickens/feedingchickenshtml#:~:text=The%20University%20of%20California-Davis%20recommends%20the%20following%20for,to%202.4%20lbs.%20per%20week%20per%20layer%20hen, accessed Nov. 16, 2021.
[ 174 ] Livestocking.net (2021), Standard Broiler Feed Chart [Plus Expected Weight / Growth], https://www.livestocking.net/standard-broiler-feed-chart-growth-weight, accessed Nov. 16, 2021.
[ 175 ] Pflanzenkohle.de (2019), Futterkohle, Webseite: https://pflanzenkohle.de/index.php/futterkohle/.
[ 176 ] Schmidt h.P., Gerlach A.., Gerlach H.., Kaymmann, C. (2016): Der Einsatz von Pflanzenkohle in der Tierfütterung; Ithaka Journal; Journaleintrag: https://www.ithakajournal.net/pflanzenkohle-tierfuetterung.
[ 177 ] Proplanta (2020), Rind -Futteraufnahme und Fütterung (Cattle – forage intake and feeding), https://www.proplanta.de/Rind/Futteraufnahme-und-Fuetterung-Rind_Tier1212180033.html.
[ 178 ] Baum, G., LEL Schwäbisch Gmünd. (2018): Wirtschaftlichkeit der Hähnchenmast – Auswertung von Betrieben in Baden-Württemberg (2011 bis 2017)/( Economic efficiency of chicken fattening – evaluation of farms in Baden-Württemberg): report: https://kmbw.de/pb/site/pbs-bw-new/get/documents/MLR.LEL/PB5Documents/lel/Abteilung_2/Oekonomik_der_Betriebszweige/Tierhaltung/Gefluegel/extern/BZA%20BroilerBW.pdf.
[ 179 ] Baden-Württemberg Ministerium für Ländlichen Raum und Verbraucherschutz. (2018): Kalkulationsdaten Schweine; Webseite: https://www.bio-ausbw.de/,Lde/Startseite/Erzeugen_Vermarkten/vollkosten+oeko-schweinehaltung.
[ 180 ] Thüringer Landesanstalt für Landwirtschaft (2014), Betriebswirtschaftliche Richtwerte Schweinemast: https://www.tll.de/www/daten/publikationen/richtwerte/rw_swma.pdf.
[ 181 ] Thüringer Landesanstalt für Landwirtschaft (2011), Betriebswirtschaftliche Richtwerte Bullenmast: https://www.tll.de/www/daten/publikationen/richtwerte/buma0911.pdf.
[ 182 ] Baden-Württemberg Ministerium für Ländlichen Raum und Verbraucherschutz (2018): Kalkulationsdaten Öko-Rinder 2018; Webseite: https://www.bio-ausbw.de/,Lde/Startseite/Erzeugen_Vermarkten/Kalkulationsdaten+Rinder.
[ 183 ] UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION (2004,2005,2008,2010,2018): Sample costs for beef cattle; case study reports; study of 2018: https://coststudies.ucdavis.edu/en/filer/file/1531343198/18665/, accessed Nov. 7, 2021.
[ 184 ] Rohlmann, C., Verhaagh, M. (2020): Steckbrief zur Tierhaltung in Deutschland: Ferkelerzeugung und Schweinemast (Profile of animal husbandry in Germany: piglet production and pig fattening); Thünen-Institut für Betriebswirtschaft. Bericht: https://www.thuenen.de/media/tithemenfelder/Nutztierhaltung_und_Aquakultur/Haltungsverfahren_in_Deutschland/Schweinehaltung/Steckbrief_Schweine2019.pdf.
[ 185 ] Vansickle J. (2006): Mortality Rates Inching Upward; online-article, NationalHogFarmer; https://www.nationalhogfarmer.com/mag/farming_mortality_rates_inching, accessed Oct. 17, 2021.
[ 186 ] Straw B E, Neubauer G D, Leman A D (1983): Factors affecting mortality in finishing pigs; J Am Vet Med Assoc. 1983 Aug 15;183(4):452-5, https://pubmed.ncbi.nlm.nih.gov/6618972/, accessed Oct. 17, 2021.
[ 187 ] TopAgrar (2012) reader‘s comment bon cattle mortality; https://www.topagrar.com/management-und-politik/aus-dem-heft/wirklich-nicht-von-dieserwelt-9675666.html; accessed Oct. 17, 2021.
[ 188 ] Statista (2021) inventory of cattle in Germany and European Union 2012-2020; https://de.statista.com/statistik/daten/studie/28934/umfrage/rinderbestand-in-deutschland-undder-eu-seit-1990/; accessed Oct. 17, 2021.
[ 189 ] Fiore G, Hofherr J, Natale F, Stifter E, Costanzi C (2010) On-farm Mortality in Cattle; JRC Technical Report; ISSN 1018-5593, doi: https://doi.org/10.2788/87010.
[ 190 ] Sivilai B, Preston TR, Leng RA, Hang DT, Linh NQ. 2018. Rice distillers’ byproduct and biochar as additives to a forage-based diet for growing Moo Lath pigs; effects on growth and feed conversion. Livestock Research for Rural Development 2018 Vol.30 No.6 pp. Article 111; ISSN; https://www.cabdirect.org/cabdirect/abstract/20183306149?q=(au%3A%22Sivilai%2C+B.%22), accessed Nov. 8, 2021.
[ 191 ] Kupper, T.; Fischlin, I.; H.ni, C.; Spring, P. (2015), Use of a feed additive based on biochar for mitigation of ammonia emissions from weaned piglets and broilers; RAMIRAN 2015 – 16th International Conference Rural-Urban Symbiosis, 8th – 10th September 2015, Hamburg, Germany, DOI https://doi.org/urn:nbn:de:gbv:830-882137421.
[ 192 ] Winders, T.M.; Jolly-Breithaupt, M.L.;Wilson, H.C.; MacDonald, J.C.; Erickson, G.E.;Watson, A.K. Evaluation of the effects of biochar on diet digestibility and methane production from growing and finishing steers; Transl. Anim. Sci. 2019, 3, 755–783; doi: https://doi.org/10.1093/tas/txz027, accessed Nov. 8, 2021
[ 193 ] Marquart, M., Teevs, C. (2013): M.ster im Vergleich – Das Schweinesystem; SPIEGEL Magazin; Webseite: https://www.spiegel.de/wirtschaft/unternehmen/schweinemast-vergleichder-konventionellen-mit-bio-haltung-a-882816.html.
[ 194 ] Zinke, O, Culiuc, N. (2016): Rinderpreise: Soviel erhalten Landwirte (Cattle prices: This is how much farmers receive); Analyse: https://www.agrarheute.com/tier/rind/rinderpreise-sovielerhalten-landwirte-522153.
[ 195 ] Pioneer Smoke Houses, Difference in Cost between USDA Select, Choice, and Prime Brisket; Blog Post: https://www.pioneersmokehouses.com/difference-in-cost-between-usda-selectchoice-and-prime-brisket/.
[ 196 ] Sam’s Club, Beef Prices – Beef Brisket (2021); Website: https://www.samsclub.com/b/beef/1548.
[ 197 ] Statista (2021) Number of beef and milk cows in the United States from 2001 to 2019; https://www.statista.com/statistics/194302/number-of-beef-and-milk-cows-in-the-us/, accessed Nov. 8, 2021.
[ 198 ] USDA (2018) Overview of U.S. Livestock, Poultry, and Aquaculture Production in 2017; https://www.aphis.usda.gov/animal_health/nahms/downloads/Demographics2017.pdf, accessed Nov. 8, 2021.
[ 199 ] Bauern Zeitung (2017), Schweinehaltung – die Signale stehen auf Stroh (hog farming – all signals point to straw), Web article: https://bauernzeitung.at/schweinehaltung-die-signalestehen-auf-stroh/.
[ 200 ] Ökolandbau.de (2020), Ausläufe für Ökoschweine (Outlets for organic pigs), Webseite: https://www.oekolandbau.de/landwirtschaft/tier/spezielletierhaltung/schweine/mastschweinehaltung/haltung/auslaeufe-fuer-oekoschweine/.
[ 201 ] Biomassehof Allg.u eG, Bio-Einstreukohle Nummer 1 (bedding biochar no. 1); website: https://www.biomassehof.de/produkt/pflanzenkohle-getreidespelzen-bigbag/.
[ 202 ] Pflanzenkohle Allg.u, Speicherkohle (storage biochar), website: https://www.pflanzenkohleallgaeu.de/speicherkohle-1-45m3.html.
[ 203 ] Top Agrar (2017), Tierhaltung: Einstreuen leicht gemacht (bedding simplified), Webartikel: https://www.topagrar.at/rind/aus-dem-heft/einstreuen-leicht-gemacht-10576233.html.
[ 204 ] Landwirtschaftskammer (2006), KTBL Schrift 502 (2014) Festmist- und Jaucheanfall, Mengen und Nährstoffgehalte aus Bilanzierungsmodellen (manure and slurry, amounts and nutrioent contents from balancing models), Tabellen (tables): https://www.landwirtschaftskammern.de/pdf/guelledaten-rinder.pdf.
[ 205 ] Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (2018), Niedersächsische Empfehlungen zum Erhalt der Fußballengesundheit von Masthühnern (Lower Saxony recommendations for maintaining the footpad health of broiler chickens), Website: https://www.laves.niedersachsen.de/startseite/tiere/tierschutz/niedersaechsischeempfehlungen-zum-erhalt-der-fuballengesundheit-von-masthuehnern-73953.html.
[ 206 ] Bundesministerium für Ernährung und Landwirtschaft (2019), Nutztierhaltung – Geflügel (Livestock – poultry), Website: https://www.bmel.de/DE/Tier/Nutztierhaltung/Gefluegel/gefluegel_node.html.
[ 207 ] Landwirtschaftskammer Niedersachsen (2018), Einstreu in der Geflügelhaltung- Tipps und Anregungen für ein gutes Einstreumanagement (bedding in poutry farming – tipps and recommendations); https://www.lwkniedersachsen.de/index.cfm/portal/1/nav/229/article/29729.html.
[ 208 ] Umweltbundesamt/Federal Environment Agency (2014), Ammonia, Odor, Dust https://www.umweltbundesamt.de/themen/boden-landwirtschaft/umweltbelastungen-derlandwirtschaft/ammoniak-geruch-staub.
[ 209 ] EPA – United States Environmental Protection Agency (2020); Estimated Animal Agriculture Nitrogen and Phosphorus from Manure, https://www.epa.gov/nutrient-policy-data/estimatedanimal-agriculture-nitrogen-and-phosphorus-manure, accessed Oct. 30, 2021.
[ 210 ] USDA, National Agricultural Statistics Service (2012) Table 19. Poultry – Inventory and Sales: 2012 and 2007; https://www.nass.usda.gov/Publications/AgCensus/2012/Full_Report/Volume_1,_Chapter_2_County_Level/California/st06_2_019_019.pdf, accessed Nov. 12, 2021.
[ 211 ] USDA, National Agricultural Statistics Service (2020) 2017 census of agriculture – highlights: Poultry and Egg Production, Highlights Poultry inventory, sales, and number of farms up since 2012; https://www.nass.usda.gov/Publications/Highlights/2020/census-poultry.pdf, accessed Nov. 12, 2021.
[ 212 ] Ruddy, Lorenz, Mueller – USGS (2006) County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982–2001; https://pubs.usgs.gov/sir/2006/5012/pdf/sir2006_5012.pdf, accessed Nov. 12, 2021.
[ 213 ] USDA, NRCS (2020) Animal Manure Management; https://www.nrcs.usda.gov/wps/portal/nrcs/detail/ca/home/?cid=nrcs143_014211, accessed Nov. 12, 2021.
[ 214 ] Li Kezhai (2021): Animal Manure Production Capacity Calculation; https://manurefertilizermachine.com/animal-manure-production-capacity-calculation/, accessed Nov. 12, 2021.
[ 215 ] CDFA – California Department of Food and Agriculture (2018): California County Agricultural Commissioners’ REPORTS – Crop Year 2015-2016; https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/2016/2016cropyearcactb00.pdf, accessed Nov. 12, 2021.
[ 216 ] USDA Economic Research Service (2019); Fertilizer Use and Price; https://www.ers.usda.gov/webdocs/DataFiles/50341/fertilizeruse.xls?v=6720.3, accessed Nov. 12, 2021.
[ 217 ] Rosenstock T.S., Liptzin D., Six Tomich T.P. (2013) Nitrogen fertilizer use in California: Assessing the data, trends and a way forward, CALIFORNIA AGRICULTURE • VOLUME 67, NUMBER 1; https://californiaagriculture.ucanr.edu/landingpage.cfm?article=ca.E.v067n01p68&fulltext=yes; DOI: 10.3733/ca.E.v067n01p68, accessed Nov. 12, 2021.
[ 218 ] DESTATIS (2017) Wirtschaftsdünger tierischer Herkunft in landwirtschaftlichen Betrieben (farm fertilizer of animal origin) / Agrarstrukturerhebung – Fachserie 3 Reihe 2.2.2 – 2016; https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Produktionsmethoden/Publikationen/Downloads-Produktionsmethoden/wirtschaftsduenger-2030222169005.html.
[ 219 ] Landwirtschaftskammer Nordrhein-Westfalen. (2014): Mittlere Nährstoffgehalte organischer Dünger – Richtwerte, Stand: Januar 2014). (average nutrient contents of organic fertilizer, orientation values January 2014); report https://www.landwirtschaftskammer.de/landwirtschaft/ackerbau/pdf/naehrstoffgehalteorganischer-duenger.pdf.
[ 220 ] Landwirtschaftkammer Nordrhein-Westfalen; Gülle-Düngung – Was ist in der Gülle enthalten? (using slurry as fertilizer – What are the ingredients?) https://www.landwirtschaftskammer.de/landwirtschaft/ackerbau/duengung/guelle/duenger/guelleinhaltsstoffe.htm.
[ 221 ] Institut für ökologischen Landbau, Bodenkultur und Ressourcenschutz (2019), Tabelle 4b: Gülle- und Jaucheanfall verschiedener Tierarten in m3 pro mittlerem Jahresbestand bei verschiedenen TM-Gehalten; https://www.lfl.bayern.de/mam/cms07/iab/dateien/basisdaten_20190131_4b.pdf.
[ 222 ] Bayerisches Staatsministerium für Ern.hrung, Landwirtschaft und Forsten. Merkblatt zur Düngerverordnung: Anwendung stickstoff- und phosphorhaltiger Düngermittel (Leaflet on the fertilizer ordinance: application of fertilizers containing nitrogen and phosphorus). https://www.alf-nd.bayern.de/landwirtschaft/pflanzenbau/071286/index.php#:~:text=jedoch%20nicht%20mehr%20als%2040,20%20m%C2%B3%20Schweineg%C3%BClle.
[ 223 ] European Commission, Richtlinie 91/676/EWG des Rates vom 12. Dezember 1991 zum Schutz der Gewässer vor Verunreinigung durch Nitrat aus landwirtschaftlichen Quellen; https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=LEGISSUM:l28013.
[ 224 ] USDA, NASS, 2020 Agricultural Land Values and Cash Rents, https://www.nass.usda.gov/Publications/Highlights/2020/land-values-cash-rents.pdf.
[ 225 ] USDA, NASS, 2020 Agricultural Land Cash Rents, data base inquiry, https://quickstats.nass.usda.gov/results/D60380FA-306D-35EA-9BB3-DFD03CDE8B6C.
[ 226 ] Bayrische Landesanstalt für Landwirtschaft (2003) Vergleich der Wirkung von Gülle mit Stallmist und Jauche im ökologischen Landbau (comparison of slurry and solid manure in organic farming); https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/p_20004.pdf.
[ 227 ] Aguirre-Villegas, H.A., Larson, R. (2017): Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. Journal of Cleaner Production, Volume 143, 1 February 2017, Pages 169-179. Report: https://www.sciencedirect.com/science/article/pii/S0959652616321953#tbl1.
[ 228 ] Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils 35, 219-230; https://doi.org/10.1007/s00374-002-0466-4; accessed Nov. 17, 2021.
[ 229 ] Schmidt, H. P. (2011): Schmidt HP: Wege zu Terra Preta – Aktivierung von Pflanzenkohle (Pathways to Terra Preta – Activation of plant charcoal); Ithaka Journal 1/ 2011: 28–32 (2011); www.ithaka-journal.net.
[ 230 ] Praktisch Nachhaltig (2020), Terra Preta, Blog: https://www.praktischnachhaltig.de/klimafarming-mit-terra-preta-der-schwarzen-erde/.
[ 231 ] USDA-NRCS, web soil survey – Description — Soil Health – Organic Matter; https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx, accessed Oct 24, 2021.
[ 232 ] Liedtke, H.; Marschner B. Bodengüte der landwirtschaftlichen Nutzflächen; Nationalatlas Bundesrepublik Deutschland (Soil quality of agricultural land; National Atlas of the Federal Republic of Germany); https://archiv.nationalatlas.de/wp-content/art_pdf/Band2_104-105_archiv.pdf.
[ 233 ] Deutscher Bundestag, Wissenschaftliche Dienste (German Federal Parliament, Scientific Services) (2021): Speicherung von CO2 in Böden (storage of CO2 in soils); documentation WD 8 – 3000 – 061/21; 2021, July 5, https://www.bundestag.de/resource/blob/854488/90e6d18844960c5aa81dfc675afec5a3/WD-8-061-21-pdf-data.pdf, accessed Nov. 22, 2021.
[ 234 ] BGR – Bundesanstalt für Geowissenschaften und Rohstoffe (German Agency of Geosciences and Ressources) Ackerbauliches Ertragspotential der B.den in Deutschland (agricultural yield potential of soils in Germany); https://www.bgr.bund.de/DE/Themen/Boden/Ressourcenbewertung/Ertragspotential/Ertragspotential_node.html, accessed Oct. 25, 2021.
[ 235 ] Walsh Cady C. (2020), Development of Soil Organic Carbon Map for California; California Dept. Food and Agriculture, presentation May 5-6, 2020; https://www.cdfa.ca.gov/oefi/healthysoils/docs/DevelopmentofSoilOrganicCarbonMapforCalifornia_slides.pdf, accessed Nov. 22, 2021.
[ 236 ] Parikh S. J. (UC Davis) (2016) Evaluating Biochar’s Potential in California Agriculture; presentation, CAL FREP – Fertilizer Research and Education program,
https://www.cdfa.ca.gov/is/ffldrs/frep/pdfs/2016FREPPresentations/1-3ParikhBiochar.pdf, accessed Nov. 22, 2021.
[ 237 ] UfaRevue, Bodenleben und -struktur berücksichtigen (Observe soil biology and structure); https://www.ufarevue.ch/pflanzenbau/bodenleben-und-struktur-beruecksichtigen, accessed Nov. 22, 2021.
[ 238 ] Gharib, M., Beste, A.. (2015): Terra Preta / Pyrolysekohle – BUND-Einsch.tzung ihrer Umweltrelevanz (Terra Preta / pyrolysis coal – BUND assessment of its environmental relevance); Report: https://www.bund.net/fileadmin/user_upload_bund/_migrated/publications/150504_bund_sonstiges_bodenschutz_terra_preta_einschaetzung.pdf.
[ 239 ] Prodana (2020), Häufig gestellte Fragen zu Terra Preta (Terra Preta Frequently Asked Questions), website: https://www.prodana.de/terra-preta-faqs.
[ 240 ] Brower C., Heibloem M. – FAO (1986) Irrigation Water Management, Training manual no. 3 – Irrigation Water Needs; UN Food and Agriculture Organization – FAO; https://www.fao.org/3/S2022E/s2022e00.htm#Contents; accessed Nov. 25, 2021
[ 241 ] Haseeb J. (2017) Crop Water Requirement in Irrigation and Evaluation of Water Losses; about.civil.org-website, https://www.aboutcivil.org/water-requirements-of-crops.html, accessed Nov. 25, 2021.
[ 242 ] Fulton A., Goldhamer D., Lampinen B., Prichard T., Sanden B., Schwankl L., Shackel K. (2021): Crop Irrigation Strategies; UC Drought Management, Division of Agriculture an Natural Resources, University of California, https://ucmanagedrought.ucdavis.edu/Agriculture/Crop_Irrigation_Strategies/, accessed Nov. 25, 2021.
[ 243 ] Ho, M., V. Parthasarathy, E. Etienne,T. A. Russo, N. Devineni, and U. Lall (2016), America’s water: Agricultural water demands and the response of groundwater; Geophys. Res. Lett., 43, 7546–7555, doi: https://doi.org/10.1002/2016GL069797, accessed Nov. 25, 2021.
[ 244 ] Kumar R., Vijay R., Singh P., Upadhyay A. (2017), Planning and Evaluation of Irrigation Projects – Methods and Implementation – Chapter 18 – Scheme Irrigation Efficiency; Academic Press 2017, https://doi.org/10.1016/B978-0-12-811748-4.00018-2, accessed Nov. 25, 2021.
[ 245 ] Landwirtschaftskammer Niedersachsen (2020) Beregnung – Potentiale zum Wassersparen nutzen (Irrigation – saving potentials); https://www.lwk-niedersachsen.de/lwk/news/35553_Beregnung_%E2%80%93_Potentiale_zum_Wassersparen_nutzen, accessed Nov. 25, 2021.
[ 246 ] Kuziakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. (2009): Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling; Soil Biology & Biochemistry 41, 2009, p 210-219.
[ 247 ] Schmidt, M. W. I.; Noack, A.G. (2000): Black carbon in soils and sediments – Analysis, distribution, implications and current challenges; Global Biochemical Cycles; 14, 2000, pp 777-794.
[ 248 ] Lehmann, J. (2007): Bio-energy in the black; Ecology and the Environment, 5(7), 2007, pp 381-387.
[ 249 ] EBC (2020), Certification of the carbon sink potential of biochar, Ithaka Institute, Arbaz, Switzerland. (https://European-biochar.org). Version 2.1E of 1st February 2021.
[ 250 ] EBI European Biochar Industry Consortium e.V.. (2020), EBI Whitepaper – Biochar-based carbon sinks to mitigate climate change; https://github.com/Carbonfuture/PublicResources/raw/master/Whitepaper_Biochar2020.pdf.
[ 251 ] Carbonfuture (2021) Carbonfuture Sink Certification Standards; https://github.com/Carbonfuture/PublicResources/raw/master/cfMinimumStandards_V1.3.pdf.
[ 252 ] Carbonfuture (2021) Supplier Onboarding Manual; https://github.com/Carbonfuture/PublicResources/raw/master/PlaybookSinkProvider_Version_2.1.pdf.
[ 253 ] Landwirtschaftskammer Niedersachsen (2021) Ertragsgrafik Beregnungsversuche 2019 (diagram irrigation tests 2019); https://www.lwkniedersachsen.de/services/download.cfm?file=33844; accessed Dec. 8, 2021.
[ 254 ] Honan M., Feng X., Tricarico J.M., Kebreab E. (2020) Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action effectiveness and safety; Animal Production Science, Review, https://doi.org/10.1071/AN20295, accessed Dec. 9, 2021.
[ 255 ] Vrancken H, Suenkel M, Hargreaves PR, Chew L, Towers E (2019) Reduction of enteric methane emission in a commercial dairy farm by a novel feed supplement. Open Journal of Animal Sciences 9, 286–296. doi: https://doi.org/10.4236/ojas.2019.93024.
From the following references actual numbers are used in the Biochar Calculator:
[1] Arnold, U.; Leetsch, D. (2020a): BioKorRekT – Produktion und Verwertung von Biokohle in BergbaufolgelONdschaften, Teil 1: Marktuntersuchung; Projektbericht, Berlin, April 2020
[2] https://www.ithaka-journal.net/pflanzenkohle-tierfuetterung
[3] https://www.biochar-journal.org/en/ct/9
[4] Chu, G.M., Kim, J.H., KONg, S.N., Song, Y.M., 2013b. Effects of Dietary Bamboo Charcoal on the Carcass Characteristics and Meat Quality of Fattening Pigs. KoreON J. Food Sci. ONim. Resource. 33, 348–355.
[5] Majewska, T.; Pyrek, D.; Faruga, A.: A note on the effect of charcoal supplementation on the performance of big 6 heavy tom turkeys. J. anim. Feed Sci. 11 135–141 (2002)
[6] Majewska, T.; Pudyszak, K.: The effect of charcoal addition to diets for broilers on performance and carcass parameters. Produktyvumui ir skerdenos rodikliams 55 10–12 (2011)
[7] https://www.bio-aus-bw.de/,Lde/Startseite/Erzeugen_Vermarkten/vollkosten+oeko-schweinehaltung
[8] Leng, R.A., Preston, T.R., Inthapanya, S., 2013b. Biochar reduces enteric methane and improves growth and feed conversion in local “ Yellow ” cattle fed cassava root chips and fresh cassava foliage 24, 2–7
[9] O’Toole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C.I., Kern, J., Kuoppamäki, K., Mumme, J., Schmidt, Hans-Peter Schulze, M., Srocke, Franziska Stenrød, M., Stenström, J., 2016. Current and future applications for biochar, in: Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B. (Eds.), Biochar in European Soils and Agriculture: Science and Practice. London
[10] Schmidt, H.-P., Shackley, S., 2016. Biochar Horizon 2025, in: Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B. (Eds.), Biochar in European Soils and Agriculture: Science and Practice. London
[11] https://www.bio-aus-bw.de/,Lde/Startseite/Erzeugen_Vermarkten/Kalkulationsdaten+Rinder
[13] https://www.sciencedirect.com/science/article/pii/S0959652616321953#tbl1
[14] https://www.proplanta.de/Rind/Futteraufnahme-und-Fuetterung-Rind_Tier1212180033.html
[16] https://www.bmel.de/DE/Tier/Nutztierhaltung/Schweine/schweine_node.html
[18] https://www.ithaka-institut.org/de/ct/22
[19] https://www.biomassehof.de/produkt/pflanzenkohle-getreidespelzen-bigbag/
[20] https://www.pflanzenkohle-allgaeu.de/speicherkohle-1-45m3.html
[22] https://www.gesetze-im-internet.de/d_v_2017/
[23] https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/p_20004.pdf
[24] https://www.tll.de/www/daten/publikationen/richtwerte/rw_swma.pdf
[25] https://www.tll.de/www/daten/publikationen/richtwerte/buma0911.pdf
[26] www.ithaka-journal.net/120
[27] https://www.thuenen.de/media/publikationen/thuenen-report/Thuenen_Report_77.pdf
[28] https://www.topagrar.at/rind/aus-dem-heft/einstreuen-leicht-gemacht-10576233.html
[29] https://www.landwirtschaftskammern.de/pdf/guelledaten-rinder.pdf
[30] https://bauernzeitung.at/schweinehaltung-die-signale-stehen-auf-stroh/
[32] https://github.com/carbonfuture/ PublicResources/raw/master/PlaybookSinkProvider_Version_2.1.pdf
[34] https://literatur.thuenen.de/digbib_extern/dn059620.pdf
[35] https://www.stockjournal.com.au/story/6781583/biochar-boosts-fleurieu-dairy-production/
[39] Schmidt H-P, Hagemann N, Draper K, Kammann C. 2019. The use of biochar in animal feeding. PeerJ 7:e7373; DOI 10.7717/peerj.7373
[40] https://www.nass.usda.gov/Charts_and_Maps/Milk_Production_and_Milk_Cows/cowrates.php
[41] https://www.ecosystemmarketplace.com/articles/can-mootral-do-for-cows-what-tesla-is-doing-for-cars/
[45] https://pacificbiochar.com/biochar-price-sheet/
[46] https://www.nass.usda.gov/Charts_and_Maps/Agricultural_Prices/pricehg.php
[47] https://www.nass.usda.gov/Charts_and_Maps/Agricultural_Prices/priceca.php
[48] https://www.nass.usda.gov/Charts_and_Maps/graphics/data/priceca.txt
[49] https://www.usda.gov/media/blog/2013/01/28/whats-your-beef-prime-choice-or-select
[50] https://www.pioneersmokehouses.com/difference-in-cost-between-usda-select-choice-and-prime-brisket/ — source for chicken meat producer prices —
[51] https://www.ams.usda.gov/mnreports/dymadvancedprices.pdf
[53] https://www.nass.usda.gov/Publications/Highlights/2020/land-values-cash-rents.pdf
[54] https://quickstats.nass.usda.gov/results/D60380FA-306D-35EA-9BB3-DFD03CDE8B6C
[55] https://www.nass.usda.gov/Quick_Stats/Ag_Overview.php?state=CALIFORNIA
[56] https://www.ers.usda.gov/data-products/fertilizer-use-and-price/
[57] https://aquaoso.com/blog/california-agricultural-water-prices/
[58] https://aquaoso.com/water-trends/water-cost-trends-agriculture-water-markets/
[59] https://www.nasdaq.com/market-activity/index/nqh2o/historical
[60] https://www.nass.usda.gov/Publications/Highlights/2019/2017Census_Irrigation_and_WaterManagement.pdf
[61] https://platform.carbonfuture.earth/balancer/portfolios
[62] https://puro.earth/services/mitigating-climate-change-1-ton-at-the-time-100033
[63] https://ww2.arb.ca.gov/sites/default/files/2020-08/results_summary.pdf
[64] https://sustainfi.com/articles/carbon/california-carbon-allowances/
[65] https://groundwaternitrate.ucdavis.edu/files/139103.pdf
[66] Blanco-Canqui et al. (2019) Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming; GCB Bioenergy. 2020-12, pp 240-251